Scott Bailey
Exploring structure and function
Professor
Department of Biochemistry and Molecular Biology
Bloomberg School of Public Health
Research Overview
Currently, my laboratory focuses on the CRISPR-Cas system, an RNA-based adaptive immune system found in bacteria that protects against invasion by viruses and plasmids. Mechanistic studies of the CRISPR-Cas system is contributing to ongoing efforts aimed at exploiting this system to both protect domesticated bacteria (such as those used in food and pharmaceutical production) and combat human pathogens and the spread of antibiotic resistance. Moreover, RNA-guided nucleases from the CRISPR-Cas system are currently being adapted for genome editing and regulation strategies in a wide variety of organisms, including humans. Indeed, the potential of the CRISPR-Cas toolkit is just being realized and studies centered on understanding how the CRISPR-Cas systems function represents an important need. To this end, my laboratory has provided structural and mechanistic insight into how CRISPR-Cas systems identify and destroy their DNA targets.
Selected Publications
- Ramachandran A, Summerville L, Learn BA, DeBell L, Bailey S. Processing and integration of functionally oriented prespacers in the E. coli CRISPR system depends on bacterial host exonuclease. Journal of Biological Chemistry, 2020.
- Singh D, Wang Y, Mallon J, Yang O, Fei J, Poddar A, Ceylan D, Bailey S, Ha T. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Nature Structural & Molecular Biology, 2018.
- Estrella MA, Kuo FT, Bailey S. RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex. Genes & Development, 2016.
- Mulepati S, Héroux A, Bailey S. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science, 2014.
- Chen H, Choi J, Bailey S. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. Journal of Biological Chemistry, 2014.