Chi Van Dang
Oncogenic alteration of metabolism and immunity
Bloomberg Distinguished Professor of Cancer Medicine
Department of Oncology , School of Medicine
Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health
Research Overview
The Dang lab contributed to defining the function of the MYC oncogene including establishing the first mechanistic link between MYC and cellular energy metabolism. This foundational concept that genetic alterations in cancers re-program fuel utilization by tumors provides a framework to develop novel strategies for cancer therapy. Current lab interests include seeking metabolic and dietary vulnerabilities of cancer and define how MYC and the circadian molecular clock influences cancer immunity, tumorigenesis and therapeutic resistance. The molecular and metabolic basis for T cell function and pancreatic cancer cell immune evasion is an ongoing area of investigation
Additional Titles
CEO & Scientific Director, Ludwig Institute for Cancer Research
Selected Publications
- Brooks R, Monzy J, Aaron B, Zhang X, Kossenkov A, Hayden J, Keeney F, Speicher DW, Zhang L, Dang CV. Circadian lncRNA ADIRF-AS1 binds PBAF and regulates renal clear cell tumorigenesis. Cell Reports, 2022.
- Wolpaw AJ, Grossmann LD, Dessau JL, Dong MM, Aaron BJ, Brafford PA, Volgina D, Pascual-Pasto G, Rodriguez-Garcia A, Uzun Y, Arsenian-Henriksson M, Powell DJ Jr, Bosse KR, Kossenkov A, Tan K, Hogarty MD, Maris JM, Dang CV. Epigenetic state determines inflammatory sensing in neuroblastoma. PNAS, 2022.
- Gouw AM, Margulis K, Liu NS, Raman SJ, Mancuso A, Toal GG, Tong L, Mosley A, Hsieh AL, Sullivan DK, Stine ZE, Altman BJ, Schulze A, Dang CV, Zare RN, Felsher DW. The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metabolism, 2019.
- Walton ZE, Patel CH, Brooks RC, Yu Y, Ibrahim-Hashim A, Riddle M, Porcu A, Jiang T, Ecker BL, Tameire F, Koumenis C, Weeraratna AT, Welsh DK, Gillies R, Alwine JC, Zhang L, Powell JD, Dang CV. Acid Suspends the Circadian Clock in Hypoxia through Inhibition of mTOR. Cell, 2018.
- Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, Gouw AM, Venkataraman A, Li B, Goraksha-Hicks P, Diskin SJ, Bellovin DI, Simon MC, Rathmell JC, Lazar MA, Maris JM, Felsher DW, Hogenesch JB, Weljie AM, Dang CV. MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metabolism, 2015.