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Introduction Results

• Charcot-Marie-Tooth type 4B3 (CMT4B3) is a severe inherited peripheral 

neuropathy. It can be present in either axonal or dysmyelinating form. 

• It is an autosomal recessive disorder primarily affecting the peripheral 

nervous system (PNS), leading to muscle weakness, sensory loss, 

syndactyly, and foot deformities. In severe cases, central nervous system 
(CNS) involvement may also occur, with patients exhibiting features such 

as "fork and bracket" syndrome, microcephaly, and cognitive impairment.

• CMT4B3 is caused by loss-of-function mutations in the SBF1 gene, 

which encodes  for Myotubularin- related phosphatase 5 (MTMR 5). 

• Current mouse and cellular models do not fully recapitulate human 

disease characteristics, limiting our understanding of CMT4B3 pathology.

• Since MTMR5 functions as an autophagy suppressor, we hypothesize 

that mutations in SBF1/MTMR5 associated with CMT4B3 result in 

autophagy dysregulation and lysosomal dysfunction.

Figure 1: Comparison of the autophagy pathway under physiological conditions and in 

CMT4B3 pathophysiology. In CMT4B3, mutations in SBF1/MTMR5 result in upregulated 

autophagic activity, leading to excessive degradation and contributing to neurodegeneration.

• Develop a novel and reliable human iPSC-derived cell model of CMT4B3 

using patient-derived cells.

• Differentiate iPSCs into key components of the peripheral nervous 

system, including motor neurons, sensory neurons, and skeletal muscle.

• Investigate lysosomal dysfunction and autophagy dysregulation in 

CMT4B3 and their contributions to disease pathogenesis.

• Utilize mEGFP-LC3B-tagged motor neurons, sensory neurons, and 

skeletal muscle to visualize autophagy in real- time, achieved through 

SBF1/MTMR5 knockdown via shRNA.

• Evaluate potential therapeutic strategies by testing candidate rescue 

approaches with high translational value.
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• Assess autophagy in patient-derived iMotor neurons.

• Use CRISPR-corrected iPSCs as isogenic controls.

• Differentiate iPSCs into Schwann cells to expand PNS cell models.

• Analyze cell viability and dependence on hyperactive autophagy in 

CMT4B3.

• Study the cell or non-cell autonomous effect of SBF1 mutations.

• Investigate mitophagy and mitochondrial health in CMT4B3 cells.

• Test therapeutic candidates and motor neuron autophagy modulators.

• Use proteomics to study MTMR5 interactors and their functions in 

neurons.

• This novel human-iPSC-based model system for CMT4B3 and provides a 

rapid (<14d) and robust (>99% pure) differentiation protocol for generating 

motor neurons, sensory neurons and skeletal muscle cells.

• Our initial studies indicate that the loss of MTMR5 protein is associated with 

inappropriate enhancement of autophagy, highlighting its significant role 

across different cell types.

• This human iPSC-derived model serves as a strong platform for detailed 

analysis of CMT4B3 mechanisms, paving the way for discovering new 

therapeutic strategies tailored specifically to patients based on their unique 

mutation profiles.

Figure 2: Establishment of patient -derived iPSCs cellular model  

2A) Process of differentiating iPSCs into the cells of PNS using 

PiggyBac/Transposase system used for the stable integration of doxycycline- inducible 
cassettes. 2B) Wildtype and CMT iPSCs. 2C) Immunocytochemical analysis of 

pluripotency of iPSCs using Nanog, SOX2, OCT4 and Podocalyxin. 2D) iPSCs 

expressing BFP confirming the integration of PiggyBac vectors. Scale Bar: 150 µm

Figure 3: Differentiation of cells of the peripheral nervous system (PNS). (3A) Cell 

morphology of mature iMotor neurons (day 14) , iSensory neurons (day 14) and iSkeletal 

muscle (day 7). 3B) Immunocytochemical analysis of maturity markers showing MAP2 

and ChAT expression in iMotor neurons, Tuj1 and PRPH in iSensory neurons and MyoD 

and MF20 in iSkeletal Muscles. Scale bars: 300 µm (iMuscle), 150 µm (neurons)

Figure 5: SBF1 knockdown leads to increased autophagy in motor neurons, sensory neurons, and skeletal muscle. (5A) Live-cell imaging of SBF1 

knockdown (KD) motor neurons, sensory neurons, and skeletal muscle expressing mEGFP-LC3B, showing increased LC3-II puncta formation, indicative of 

enhanced autophagic activity. (5B-D) Western blot analysis confirming SBF1/MTMR5 knockdown and assessing autophagy markers, LC3-II and p62 levels 

in SBF1 KD cells compared to wild-type controls. (5E-G) Quantification of MTMR5, LC3-II and p62 puncta per cell across different cell types. Data are 

presented as mean ± SEM. Statistical significance: **** < 0.05, ** < 0.01, n.s- non-significant. Scale bar: 10 μm (neurons), 20um (muscle)
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Figure 4. Assessment of autophagy in patient-derived iSensory neurons and iSkeletal muscle.

(4A, B) Western blot analysis of LC3-II, p62, and MTMR5 in CMT4B3 patient-derived cells compared to wild-type (WT) controls. (4C–E) 

Quantification of MTMR5, LC3-II, and p62 protein levels. Data are presented as mean ± SEM. Statistical significance: n.s. (not significant), * < 0.1.
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Figure 6: Autophagy disinhibition  Recue by VPS34-IN1 in SBF1 knockdown iMotor and iSensory neurons. (6A) Schematic representation of 

VPS34-IN1 mechanism of action in modulating heightened autophagy. (6B) Live-cell imaging of SBF1 knockdown (KD) neurons expressing 

mEGFP-LC3B, showing reduced LC3-II puncta following VPS34-IN1 treatment. Scale bar: 10 μm.
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